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We consider a bilinear signal process driven by a Gauss—Markov pro-
cess which is observed in additive, white, gaussian noise. An exact
stochastic differential equation for the least squares filter is der ived
when the Lie algebra associated with the signal process isnil potent. It
is shown that the filter is also bilinear and moreover that it satisfies
an analogous nilpotency condition . Finally , some special cases and an
example are discussed , indicating ways of reducing the filter dimension-
ality.
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OPTIMAL FILTERS FOR BILINEAR SYSTEMS

WITH NILPOTENT LIE ALGEBRAS

1. INTRODUCTION

In recent years. detection , estimation and control of signal pro-

cesses represented by bilinear systems has received some attention in the

literature; see, e.g. articles [11, [2] and [3] and survey [4]. The

principal motivation for studying this class of problems lies in its

potential applications to a variety of practical areas such as inertial

navigation , satellite attitude control and angle modulation.

We focus on least squares estimators in additive , white , gaussian

noise environment. In [1], such estimators have been obtained in

recursive and closed form under the assumption that Lie algebras associ-

ated with the signal process are abelian. In [3], the existence of such

finite dimensional, recursive estimators has been established under the

weaker requirement that these Lie algebras need only be nilpotent; no

attempt, however, is made towards displaying the estimator equations

themselves.

In the present paper, we derive explicitly , the finite dimensional ,

closed form , recursive filtering equations when the signal process satisfies

a nilpotency condition , thus supplying a complete and constructive so~u—

tion to this class of problems. In this process , we prove that the filter

is bilinear as well and , moreover , that it also possesses analogous

nipotent property. A number of interesting special cases ar identified

— . ,.,—r--,— - —---——- -
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in which the estimator can be alternatively realized via a linear filter

followed by a nonlinear postprocessor , a structure that may prove

advantageous from the viewpoint of practical implementation .

In the next section, we formu late the problem and present some

mathematical preliminaries. The third section contains the main theorem

on the properties of the optimal filter, and the final section deals with

comput ational considerations.

2. PROBLEM STATEMENT AND PRELIMIEARIES

Consider the following standard linear Tto models for the signal

and observation processes respectively.

The Signal Model:

d~ (t) = F(t)~ (t)dt + Q~~
2 (t)d w ( t ) ,  t > 0 (2.1)

The Observation Model:

dz(t) = H(t)~~(t)dt + R~
I’2(t)dv(t), t > 0 (2.2)

where , w() and v() are standard N and P dimensional independent

Wiener processes respectively , L(t) E ~N, z(t) E IRE’, ~(O) is a

zero mean, gaussian random vector independent of w () and v(s) processes

and F( ), Q1’
~
2
(’), H( ), RU2(.) are time—dependent matrices of

appropriate dimensions, with Q(t), R(t) positive definite and continuously

differentiable for all t .
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Our interest in this paper centers on the least square estimation

of nonanticipative, square integrable, nonrandom functionals on the

Gauss—Markov process ~~(•) definec~ in (2.1), based on the observation

process z(•) defined in (2.2). it is only natural to represent a

functional of this type by a dynamical system driven by 
~~~~~~~~~

Clearly, this problem fits the framework of the nonlinear filtering

problem discussed by Kushner [5]. His solution, however , requires , in

general , solving an infinite set cf coupled stochastic differential

equations. As a result , a number of approximation schemes have since

been proposed to “close” this infinite set , notable among them : Extended

Kalman filter, Symmetric Density Filter, Bass—Schwartz Filter , a cumulant dis-

car d hypothesis, fourth moment assumption and various other moment approxima-

tions; the interested render is referred reader is referred to Chapter

9 of [6] and reference therein. Each of these attempts have experienced

varying degrees of success, depending on the specific practical applica-

tion at hand. Besides, they have often lacked rigorous mathematical

justification.

Our approach, here, is different, in that we seek to “close” the

Kushner equations exactly by suitably restricting the class of nonlinear

functionals to be estimated, thus obtaining an exact solution to the

restricted problem. Moreover, we should like this restricted subset of

functionals ~o be also “dense” in the class of L2 
— functionals, so that

we would have essentially “solved” the global nonlinear problem as well.

Analogous approach has in the past , been taken by Balakrishnan [71 and

‘A



-

4

more recently by Huang [8), Chapter V, although in a “static” framework ,

that is, nonrecursive estimation of a single random variable from fixed

length data without the dynamical signal and noise framework.

In view of the above considerations and some results available

(see [9] and [10]) on approximation of nonlinear systems with deterministic

inputs, the class of bilinear systems seems to be the most promising subset

on which one would like to focus attention. We, therefore, assume that

the signal process {x(t)}
~ > o’ x(t) E ~M to be estimated , evolves

according to the following bilinear dynamical equation :

N
dx(t) = Ax( t )d t + ~ B .~~.(t)x(t)dt (2.3)

i=l

where A , B1,..., EN 
are M X M constant matrices , and x(O) is

independen t of f~(0) and w(~) and v() processes. With this model , we

seek a finite dimensional stochastic differential equation for computing

x(t/t) 4 E[x(t)/zt].

Besides the aforementioned mathematical considerations , the above

signal model has strong justification on physical grounds as well. As

discussed e.g. in [1] and [11], (the state transition matrices of) bilinear

systems, evolving on Lie groups can perfectly represent certain types of

motion such as rotation of rigid bodies.

It may be appropriate at this point to recall some pertinent definitions

and facts from the theory of Lie algebras and Lie groups. Further details

may he found , for example , in [12]. Let L denote a Lie algebra and
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eL. the associated Lie group. It is easy to verify that the set

A [L ,L 1 ‘~~ 
{ [A ,B] I A ,B E LI (2 .4)

is an (ideal) subalgebra, where [A ,B] t~ AB—BA , is the Lie bracket

operation. Now define analogously the following two series of decreasing ,

nested subalgebras, recursively as,

Lk A [L ,L~~
1
] ~ ([A ,B] 1A E L ,B E L

k_l
} k = 2,3,..., with L

1 
=

(2.5)

and

L
k ~ 

[L k l ,  Lk l
] ~ {[A ,B] A ,B E L

k l
} , k = 2 ,3 , . . .  ( 2 . 6 )

Definition 2.1: The Lie algebra L (and the Lie group G
L
) is said to be

~i)  abeli an if L1 
=

Kb) nilpotent if there is an integer K such that L = {O}

c) solvable if there is an integer K such that L
K 

= {o}.

Analogous definitions can be made with respect to an associative

algebra as well , merely by replacing Lie bracket operation by ordinary

matrix multiplication in the above discussion. It then follows directly

from the definitions that a) ~ b) c) and that for a Lie algebra to

possess one or more of these properties it is sufficient that the smallest

matrix algebra containing the Lie algebra also possess the corresponding

property. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~~~~~~~~~~ ~~~~~ --
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Coni ing bac k to our estimation problem summarized in the signal

and noise models ( 2 . 1 ) ,  (2 .2 )  and ( 2 . 3) ,  it was shown in [11, that  if the

Lie algebra generated by the matrices A ,B1,..., EN, 
denoted by

f A , B1, . . .  
~

BN
}

L is abelian , the estimator for x (~~) consists of a

linear filter and a nonlinear postprocessor. In [3), the ahelian type

condition was replaced by a weaker nilpotency condition . However , [31

c~ tabl ishes merely the existence of a f in i te  dimensional recursive f i l t e r .

In the next section , we derive explicitly under the above Lie—algebraic

nilpotency condition — the stochastic d i f fe ren t ia l  equations of the f i l t e r

and futhermore explore its algebraic properties as well . A perliminary

analysis of this type for the much simpler special case of associate

algebraic nilpotency may be found in [13].

3. PROPERTIES OF THE NON-LINEAR FILTER

We begin with some lemmas which will be heavily used in the proof

of the theorem.

Lemma 1 (Canonical Nilpotent Form):

Every nilpotent matrix Lie algebra can be converted , by a similarity

transformation , into its canonical Lie algebra consisting of block diagonal

matrices wherein each diagonal block is triangular with equal elements on

the diagonal.

P :  See Sagle and Walde [121 pp. 224—227.

5- .
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Lemma 2 (Exponential Formula) :

~
‘ -~N

Let ~~be a Lie algebra of matrices with ~H.j as its basis. Then
i =  1

for any pair A ,B t we have

N

eAt Be
_At 

= ~ g . ( t ) H . ( 3 . 1)
1

fwher e ~g1(~ )
j~ ar e analyt ic  fu nctions.
i=l

Proof : See lemmas (i) and (ii) of Wei and Norman [14].

Lemma 3:

Consider the signal and observation models of (2.1) and (2.2) respectively.

De f ine a (vector ) process {y ( t ) }
~ > 

~ 
by

N r
dy ( t )  = D y (t ) dt  + ~ E .F~.(t)y(t) where: D, jE.). are

i=l 1=1

matrices of appropriate dimension, y(O) is (3.2)

independent of E(O), w(.) and v(.) processes.

Then y(t/t) ~ E[y(t)/z
t] satisfies the following stochastic differential

equation :

dy ( t / t )  = Dy(t/t)dt + ~~E . Et~~~. ( t ) y (t ) ] d t  + {E t [y ( t )~
T

( t ) J

- y ( t / t )~
T (t / t )} HT ( t ) R ~~ (t ) d v ( t )  ( 3 .3)

y(O / O)  = E [y ( O ) ]

where E t E . ]  A E[ .Izt ] A EH {z(T) ( O < T  < t } ]

d~~(t )  = dz(t) - H ( t ) f ( t / t ) d t .  

-5- — ---~~~~~~~~~~~~~~~~~~~~~ — -~~~~
. ---- . 5
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/
L’ r o o f :  App l y the Kushner nonlinear filtering equations [5J to the signal

~~~~~~~ (~,T ( .)  rT .~~
T with z() as the observation process.

Lemma 4:

T
Let x = (x , x 1, . . . ,  x )  be a gusslan random vector wi t h  mean vector

T — n
m = (m , m ,.. • , in ) and covar iance mat r ix P = [P . . ]  . WeC) 1 n i J . . = 0

then have the following relation :

(m + p ) . E~e
0 11 x . l  + E[e 0 

~ P .E[ ~~ x .~1 , a > i
1 ol i=2 j=2 i=2 11

x n i~jt o
Eie Jtx . =

i=l~~ 
X

(m
1 + r 01

) E[e 0] ~ = 1

Proof : We shall indicate only the main steps of the proof leaving the purely

algebraic mani pulations to the reader.

E~e
0 
nx .] =J (2~~IPI)~~~~~

l
~~

2exp - ~ (x_m)
T
P~~~(x_m). e °f l x . dx

n+l
1 (where HIL~det())

= (21 r I P I ) ~~~~~
+1

~~~
2 . e

m
o 

+ 
~~~~~~~~~~ .1• ~i l

exp - +I(xo 
- m

0 
- ~i~) 2 . + .~~~0

Q
~~

(x
1 

- m1)(x~ 
- m

i ) ]  dx

i=j~~O

(upon completing the square for the term i = j = 0 and using the notation

Q . .  A ~~~~ element of p 1 
~ 

Q)

I

5- . .-----—--___ _ _ i - _
-5.- -~~ 
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1 — (n+l)( m +~~P )  2 20 00 . (2F !PI) J dx li x . exp — ~-frx — m — ~~— ) Q

IR’~~ 
00

+ - m - ~~ -)(x;- m .) + ~ Q . (x . - m .)(x - m-
i ,j=0 00 1,] 0 00

i=O , j~~O i~~0 ,j=0

fl n - Q .  P . C .
01 01 01+ L Q..(x.— m .)(x.— m .)j. exi —

~~~~~ 

~—(x .— in .) —

i ,j=l i=l 00 00 00 -

(where , C ..  A cofactor  of P . . )
1] 1]

= 

(in
0 

+ 2
~

00
)

I 21tp I  2J R x . exp — 

4~
(x
*
- m~)

T
P~~ (x~

_ m
*)j

exp~~~ 
~~~~ 

(P . — x . + m .)jdx~

(integrating wi th respect to x , using the nota t ion P~ ~ [P ..]
Q.. C . .  ‘ i,j=l

x~ = (x ,... ,x )T and the fac ts that = 
1] 

for choice of
’

I a a. ’ . ’ C .’.’
i J  1]

integers i ,j, i’, j ’ and C = IP~~,

I n
(in + — P  ) -—

e 
0 2 oo 

.I2~P I  
2 

1.ii
1
x .exp — -

~4(x*
— m

~ 
— ~:) T~ _ 1

( ‘
~~~

—

n 
*(combining the exponents , and noting the fact that C 2 

= ~ P .C .., wi th

* * j=l - -

wi th -n .. A cofactor of P . .  in P . Also P A [P p ... p ]1~~~~)- * o ol o2 on

We have thus arrived at the following conc lusion:

x n (in +~~p ) 
r0 

Ti x .  = e o 2 00 
• ~ ~ ( 3 . 5 )

i=l 1 L i=1 
1

where Y = (Y
1
. . . Y ) T is a gaussian random vector with mean vector

(m + P ,. .. , m + p )
T 

~nd P as the covariance matrix.1 ol n on

_ _  - -
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Now , a standard moment theorem for  gaussian v e c tor s  (see e .g .  [ 15])  ~ ields

Et JI Y .1 = (in
1 
÷ P

i
)E~~ f l Y.] + 

~~~
Pl. E

~~~
f l Y

k 1 
. (3 . 6)

k~ j

Combining (3 .5 )  and (3 .6 ) , and using repeated ly id e n t i t y  analogous to

(3 .5 )  for  vector x w i t h  reduced d imensionali ty gives ( 3 . 4 ) ,  completing

the proof.

Q . E . D .

We are now in a position to state and prove the main theorem of

this paper.

Theorem 5: Consider the signal process fx (t)} 
0 

evolving according

to (2 .3)  and (2.1) and the observation process ~z(t)} as in ( 2 . 2 ) .

Suppose that the Lie algebra L generated by the set of ma trices

{Ad~~(B .) I = 1,2 , . . . , N; K = 0 ,1, 2 , . .  .}

*is nilpotent , with dimension N and order of nilpotency N
~~
, where

Ad~~(B .)  A B .

and , for  k = 1, 2 , ...

Ad~~(B .)  A A • Ad~~~
1(B .)  - M~~~~(B .) . A

Then the  least squares  f i l t e r e d  est imate  x ( t / t )  A E I x ( t ) / { z ( - t ) }
0 <  r < t

can be obtained from the finite dimensional , bilinear , stochastic

di f f e r e n t i a l  equation of the fol lowing f o rm: 

—5-- —-5—  - _— —-5 
5-
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dx *( t/ t )  = [A
*( t)d t  + 

~~
B
~~

(t )
~~i

( t/ t )  + ~~C~ ( t ) d ~~. ( t ) J x * ( t I t) ,

* (.  / )  t IRS , M
* 

< M . {N J ~~.~
)

~‘* I E [x . ( 0 ) J ,  I < M
x . (0/ 0) = 1 — ( L 7 )
I ( 0 , i > M

x(t/r) = L(t)x (t/t)

wher e

~ ( t )  
~ J H

T
(1)R

l
(T)dv(T), the modified innovations process , 

-

where , ~~( ./ .)  is obtained from the standard Kalman—Bucy filter (see

* * 1*  ~N f~~ ~N *[16]), L(.) is an M x M and A (‘), .
~B .( .) J .  ~~C .(.)J- are M*>c M

1=1 j=1~

matrix valued deterministic time functions such that the Lie algebra ~~.

genera ted by the set of matrices

Adk (B~ (t)~~ = 1,2,... ,N; j = 1,2,. . .  ,N; k ,~ = 0 , 1, . . . ; t 0
* 

.]
Ad (A ( t ) )

*
C .(t)

is ni lpotent  wi th  N
~ 

as the order of ni lpotency.

Proof: Let {H I}N
* 

be a basis of ~ and ~ the canonica l  f o r m  of ~ •

Hence , by Lemma 1, there exists a (nonsingular) ma t r ix  S such tha i the
*J *IN * —l *set ~~~~ with H . A SH. S , i = 1 ., . . . ,  N is a basis of and

l 1 C

* 1 1 *  2 *  ~~~~~*
‘
~ *

I t . diag ~ H . ,  H. , . . . ,  H .~ fo r  all I = 1 ,..., N , where , ea ch

( I l ag o n a t  block , i = .1, . . . ,  N , k = 1 , ... ,V . is M ~ M , =

_ _ _  -
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and of the following form:

• = I L . IM + , ii~~ E IR , k. st ct l y upper t rL n~~u 1ar . ( 3 . 8 )

Now, cons ider the transf orma t ion

y ( t )  [se~~~t ] x ( t )  . (3.9)

Using the above observation and Leimna 2, the transformed version of (2.3)

can he written as,

*N **d y ( t )  = ~ HJ~. ( t)  y ( t ) d t  (3 .10)
1=1

where , ~~( t )  = D ( t ) F ( t) ,  and D ( )  is a dete rmin is t ic  N* X N matrix

valued (ana ly t ic )  time function. But , note that the dynamical system

(3.10) is in a “decoupled” form and hence is the direct  sum of the P.

“subsystems”

*

k ~~~~~~~~ kdy (t) = ~ 1L~~. ( t)  y ( t ) ,  (3.11)
t i=1

where , yk ( .)  is the M.K vector as follows

= k11_ 1÷1~ ~~~~ l+2 
~~~~~~ ~~ 

(with ~ 0). We have thus

effectively segregated the f i l tering problem into 2. independent subproblems.

Hence (except for a possible increase in filter dimensionality) we may

assume without loss of generality that  2. = 1, so tha t the o r ig ina l

system has no nontrivial subsystems beside Itself.

~~~~~

j  

- d  ~~~~~~~.k ,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L.
• -. -.5--, 

--
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Now , apply the filtering equation (3.3) of Lemma 3 to the system

(3.10) with

k k
h
k 

h12. ..

* h *
H1 = . : ,k=l ,2,...,N . (3 .12)

0

First note that the solution to this system (for ~ > 0) can be explicitly

written as 
*

. Yq~
O) q = M

= M u—q N*

e u q+l s 1  m1,... ,m l  q = i1
< 1l~

i2
< .]U

0 0  0
ç O~~~I 1 M - q — 1 s 1 m2. *

~ 
(0) • . • ~~ IT ~h. ,. ~ (o 2.)da 2. , q < M (3.13)

U 
~j .~ -‘ It= l

0 0  0

where

*

= 

k~ l
hk J 0 T

~~~
T (3.14)

0

Now, using identify (3.4)—with conditional expectations- 0f Lemma 4,

application of (3.3) to (3.10) yIelds:

-5 - -5— - —5 -  - -(•-- ~~- •~~~~~~ -~~. 
-
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N B 
N N* N (kij)

dy (t/t) ~ H.(t)f.(t/t) + P ( t ) ]y ( t / t ) d t  + ~ H~ . .(t)y (t/t)dt
3=1 ~ ‘~ k=l 1=1 j l  ‘

N’
~ N ,. (1,i,j) N N _. (2 ,i ,~~)

+ ~ D..(t)y(t/t) + P (t)v(t/t) , ,, 
~
‘ D..(t)y (t/t)

i=l j=1 - 1=1 j=l -~

1 N* N ,.(N,i,j)
+ P (t)y(t/t)j,’.. Y ~ D~ .(t)y(t/t) + P ( t ) v ( t / t )

i=l j=1

• u
T t R ~~~tdv t

y(O/O) = E[y(0)], (3.15)

c
where, the deterministic matrix valued time functions {H~(.)} , r’ •

~ j=l °

arid {H~ . .( .)  1k = I,... , N
*; i ,j = 1,... ~N} belong to the linear manifold,1,J

1*) N*
~~~~~~~ generated by the set ~~~~ and can be computed from knowledge

i. jj j=1 ‘~ 3)j=l

of the covariance matrix P(.) of the ~~(.) process and the matrix

D(.) A [Di.(.)]. Further , the “supplementary state vectors”

{(k,i,q) j,k = 1,... ,N; I = 1,... ,N*} appearing in (3.15) are defined

as follows:

(k ~ 
• 

(k , i ,j )  (k ,i , j)  (k ,i , j ) J T
y ‘ ‘

~~~~(~~) y
1
(t)

with

0, q = H
(k ,I,j)

y (0 ) M u—q N* (3. Th)

u q +l s=1 m1,...,i n l  q=i 1 
< j

1
=1

2 j~~= ii

*M—q ~ ((~ ) 0 0 0 m 
m~ 

*

r~ l 
e ~ ~ 

~~~~ J
o JJ.fM_ (~ 1P~.(G ,O )h1

r 

r 
dO r

m kr q < M 

5- -- -~~~~~ , • -— --~~~~~~~~~ -
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and we have used the well—known fact that the condit iondl  covarianee

matrix given by

P(0, t) A Ef(~(o) - ~~a/t)(~/a) - ~ (a/ t ) T
/z

t
j (3.17)

[s nonrandom for 0 < t .

A direct differentiation now reveals that the vector of augmenting

states

1 
(1,1,1) T (1 1 2) T (N ,N*,N) T T (~~~2 N*)

y ( )  4 y ( )  y ( )  . ... . . y ( )  E IR (3.18)

satisfies a differential equation of the following form:

d1y(t) = [~~ (t) + i=l 
y~(t)~~.(t)~~y(t)dt +

(3 19)

‘y(O) = 0 
J

where we have used the formula (see e.g. [17]) frequently used in fixed

point smoothing, viz;

______ = [ F ( t )  — P ( t )H T ( t ) R
_ l

( t ) H (t ) ]P ( t ,o) 

N 

(3 .20)

and the H ~ M blocks of matrices a1(•), 
~~
() and belong

-‘ i=1

respectively to the

7T({T~
1
M. ~~~~~ ~~~~~~~~~ T

~
HN* } , ~~~~~~~~~~~~~~~~~~ ~T”HN*} and

?1{H1T~~ H2T~ ,..., H
N*T

~ }I

_ __ _  _ _  -5- —  -~~~~~ - ~~~~~~~ . - -
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I .~~~~~ 0
n—i

T’? Li , 1 < I < a (3.21. )

~0

Furthermore , .(
~y~~( ) ~ 

are block diagonal mat r ices  w i t h  iden t ica l

diagonal blocks given by H~ ( ) T ~ , i = 1, . . . ,  N. For f u tu r e  reference ,

we also note that since ~ o, ~~~~~~~ E~~ {H~~~)T~} j=l

We may now again apply lemmas 3 and 4 to (3.19) and obtain the following

differential equation for ~y(t/t).

d1;(t / t )  j
I . ( t )  +~~~4(t ) l~1(t / t )  : P0(t)11Y(t/t)dt
1 

N N N A
+ ~ ( t ) y ( t / t) d t  + Z ~ ~ 

. .( t )  y ( t/ t )
k=l 1=1 ]=1

*N N
+ ~P (t)

1y(t/t) + D . . (t)
1y(t/t) , P (t)1y(t/t)

0 l=l j =1 13

N* N 
l~’ 

(2 , i , j)  -.
÷ ~ D..(t) y ( t/ t )  ,.. .P(t)1y(t/t)
i= 1j =1

N N 1,(N,i,j) T —1
+ ~

‘ m. (t) y (t/t) ]H (t)R (t)d~ (t)

i=l j=l ~

1 (0/0) = 0 (3.22)

The “new” set of supp lementary states appearing in (3.22) is in turn g
iven

b y

- - 5 - - .~~~.- - - -~~-- -5
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(k •)  
[ (k ,i ,j ) ~ (k ,i , j )

T (k , i , j ) T T
T y ( t )  A ~y (l

~~
l
~~

l) ( t )  y (l
~~

1
~~

2) ( t )  

~
:k

Y1N 
1N 

= 1 , . . . ,  N*

(k ,i,j) (k,i ,j) (k,i,j) (k,i,j) T
(k’ ,i’ 

‘~~ ~ (t )  A E (k’, ~ ‘j 
~t), 

(k ’,i’,j 
~(~) ~~(k’ ~~~

‘ 
~ 1 ’)  ( t )

0 q > M— 1
(k,i,])
(k’ , i ’ ,j  ‘ )

y 
*M u—q N

u’q+l s l  m1,. .. ,m l  q=i 1 < j
1 

= I2 <“  j u

M- *

i 
~~~~~~~~~~~ Jo JL . J

GM_ q_ l p . . (o , 0
r ~~~~~~~~~~~ 

Or
2

)

r
1 ~ 

r
2

m
r1

in
r2

m m S m
r r 2. 

*
h . h . 

2 do ,do II h . ,. £~ (a )do (3.23)
1
r1 

3r1 
‘r2 ~r2 

r1 r2 P.=l 12. ~~ 
m2. 

P. 2.

Now , the “new” augmenting state vector

T T * T ‘ * 2

2 
(1,1,1) i

(l ,l,2) 1
(N ,N ,N) T MN4N

y(t) 
~ 

y ( t ),  y ( t )  y (t )  E IR ( 3 . 2 4 )

is easily seen to satisfy the following differential equation analogous to

( ~~. 19)

d
2y(t) k2( t )  + ~~Y~ (t)~ 1

(t)J2 y (t)dt + ~
2
(t)

1
y(t)dt , 

2y(0) = 0

( 3 . 2 5 )

5-. —  - - -~~~~~~~~~~~ --5~~~~~- -~~~~~~~~~— — 
- 
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2 2
where the M x M blocks of matrices a ( )

~ ~ 
( )  and

now belong to ~({T~I~1~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~ ‘
~~~~~ N*} 

and

~~~~~~~~~~~~~~~~~~~ H~~ T~ } 
. Al so y~~(~~) ,  I = 1 N are diagonal w i t h

blocks given by H~ ()T~ , and .(~~~ )

it  is now clear how the above process can he iterated . At exactly
M- 1

the Mth app lication of Kushner equations we find that y. = 0 ,

I = 1,2,..., N so that no new supplementary states appear , resulting in

closing the chain of coupled nonlinear filtering equations . Define

T (M— l) T *
x*(t)~~ [y(t) y(t),..., y

T
(t)]  

. We see that  the dimension of x ( )

2 *  2 * 2  2 * M—1
is given by M + M(N N ) + M(N N ) + ... + M (N N ) =

2 * M—l
i~i [ 2

N
*) ~—J . The f i l t e r  of the form (3.7) results upon rewriting the

N N -l

innovations term in the standard bilinear format.

*
It only remains to prove the nilpotency of af. . Towards this

end , we note the following features of (3.7 )

(i) Each vector 1y(t), 1 < j < M—l is “coupled ” at most

to its “adjacent” vectors ~~~y(t) and 
3+ly(t) (through

A ( )  and C~~( ’) ,  I = 1,..., N matrices.)

2 * 1 — 1  2 * 1
( j j)  

( N N )  
< < 

( N N )— 1  
= i ,... , N

N N - 1  N N - l
th * f *) N  I *‘IN

Then the i row of M x M blocks of A (.), ~BJ and .
~C .}.

~. 
.l Jj=i ‘

are elements of

~
-
~{T~

JM, ~~~~~~~~ 
T~H

*
*, H1 

T~ ,..., H~~
T
~} 

with (j 1)
th block

of B . equal to H
1T~
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*
I *

N

( i i i)  1B 11. are block diagonal — hence , in n i l p ot en t  canonical f o r m —
- 1=1

wiiile {c~} 
is block tciangular with each M X M block bei ng

a multiple of T~I~1
, 1 I < H

Keeping in mind the above obsarvations and carry ing out the Lie bracke t

operations blockwise , we find that the matrices .(t) 
~ 

Ad 2.

~~ 
(A ”

(t)),

C.(t)

i = 1, . . . , N; 2. = 0,1,... inherit all the properties of A*(t) noted

above so that all the M ~< M block of matrices

B
k . .(t) A Adk (t) (B~(t)), k = 1,2,...; j= 1,..., N are strictly

, 3,  , 3A2.1 1*  )N
triangular. Since; as noted above , 1B .(t)] are themselves in nipotent

i=l
canonial form , the desired conclusion can be verified simply by carry ing out

blockwise the Lie bracket operations required in the definition (2.lb) of

n ilp otency

Q.E.D.

We thus see tha t the optimal filter structure (3.7) is similar to

that of the signal model (2.5) in that (i) it is bilinear in both drift

and diffusion terms, and furthermore (ii) it also possesses the nilpotency

property of (2.5). This behavior is analogous to that of linear

filtering problems in which a linear signal model gives rise to the

op t ima l f i l ter which is also linear in both the drift and diffusion terms .

The above structural features notwithstanding, It seems unlike l y that

the state spaces of (2.5) and (3.7) will he identical nil potent group

~~~~~ - —~~~~~— • —--- 
~~--- - - _ _ _ _ _  

_ _  - -.Th- - ---5-—
-- —5----- 
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manifolds. This is obviously undesirable from a practical standpoint.

One way to remedy this situation might be — rather than least—squares —

to look f or error criteria themselves defined on such manifolds. Such

an approach for signal processes evolving on abelian Lie groups was

followed in il l .

4. CONPIJTATIONAL CONSIDERATIONS

Realization of the filter (3./) in the form of a block schematic

is shown below in figure 1. The practical significance of the bilinear

property of the above filter is that on—line microprocessor implementa-

tion of the filter is still possible with easily available and cheap

- 
- hardware consisting of integrators , summers and multipliers. This

is especially important in view of the obviously huge dimensionality of

this filter.

Figure 1

Block Schematic of the Optimal Nonlinear Filter

z ( . )  
_ _  

-f:::-: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 Riccati Equation
Solver 

~~~~~~~~~~~~~ - - - - -  - ---— —--
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The following examp le i l lustrates the optimal f i l t e r  ( 3 . 7 )  — f o r

‘-peci{ic choice of (2.3) — obtained by applying the alogr i thm developed

in the proof of theorem 5.

Example 6: M = 3, N = 2, A = 0

b
1 

b~~ 0

= b
2 

, I = 1,2 . (4.1)

Observe that with this choice, the system (2.3) is already in the

canonical decoupled form as given by (3.11) and (3.12), and hence we

may take — following the notation of the proof — D ( )  
~~

A ~~
(•) and y(.) A x( ). This simplification permits a vast

*reduction in the filter diniensionality as follows. Since N = N = 2 ,

*N = 3 we have H = 219 having required three applications of

Kushner equations. But in this case D..() A I so that the number

of resulting augmenting states can be reduced by a factor of 2
2 

4

by combining them as follows. Define

yk(t) = ~ y~~”~~ (t), k = 1,2. (4. 2)
i=j=l

ind

2 2 (k ,i , j )

y
k v k’

(t) = ~ 
~~~~~~‘ ‘ ~~~~~(t )  £ = 1,2 - (4 .3 )

-i=j= l i ’=j ’=l

*This yields M = 21 dimensional filter with the following coefficient

matrices:

- - - --5 -
~~~~~~~~

- - -
~~~~~~~~~~~~~~~~~~~ -• - - —

~~~~~~~~~~~~~~~~~~~
-- - - - - - —-—-- - - -



- - 
______

‘—
-5- — —-5—

’ 22

I -.-‘ 
I -

~~ c
C’I N I

0 0 in C) ‘-“ 
~
- N

in
w —

c’~ r—a~---j IiI ~~

-- -r

I I s__ I
I ,-. =~~I

I 4-i 4-i 4.4
o in I o C ‘— Q

I .—I —N
in

c’J c~, c-SI m N :—:: II N c’~1-4 4-4 ,~~ I-I

- --..-~~~~~~~~~~ - - ~~±. - --_- 1
• I -~~~,—

4-’.—

.1
I C’4 r 4 4-4 0 ‘‘o o in 4.~ ‘-‘ 4-) 0

N N C’~
N N in N
-4 W -41 N

- N — )  II
Nm ~~~I

N ’~ C~~’)5—, + I i-i 
.p 4 4 

~
•
~1 - -I --— .-  4 

c.~ I I
“I

‘4 O I
N .—4 - s_- I _

o in C -~ I ‘4 4-)
-4 c.—I =fl

I I i n I  -4
I I ‘-I I N N

I N~~~~~r-4 L--afl ’ ~h)
I — =~I N C ~) N C f l

N +

I -

I ‘4
5--, 4-) 4.)

5.. ’ 4.4
-.5 .‘ ~~~ I °~4-) 0 ‘-1 ~-4— 4 N  4-i 5--’ 0 I ~ N

in c.- 4 = ~ c.~ p ~~
N N in in I in
‘-4 ~~~ I N ,.4 in

N l—J II N C—) p N L— ..~ N
-4 

~~ ~~~ (—3 11
I-I 

- -  . _  ~~~~~~~ .~~~~~~~~ . .-- 

4-i 4-) —
5-, 5-, 4.4

•1 .—4 N ‘4
—5 0 ‘s  5-’

—l — ‘4 4-’ 0
in 5- ,-4 o ~ ‘ in N

. 4  in ~-I N N
,-4 p.41 N .-I ,-I

N C-i ll ‘J) N I.-.) II C’l t- -~ II in
• N ,-i

L - 
+- 1 ’-

~~~~ - .-- ~~~~~ - 

I I

‘-5 _
4.4 4-4 ‘—5

5-’ 5— I 
~I I c.( 0 0 0 0

0 .-4 N

in in I
.-4 ( p.4 —

N ~~~ II N I.—) II 1Nt ~—~J II
=4 I

__ - ~~~~~~~ --—- -  —~~~~~~- 5-- •  -- - •- — ____

If
--5

‘4
S.-

~~~~~ 
._~ i--——-—- ~~~~~~~~~~~ ~~~~~~~~~~ -~~~~~~~~~~~~~ -~ ~~~~ ::~

._ ___ - ~~~~~~ r... — — - -



-— —5-- 
_ _ _

-
~~~

—
~~

--—-—— _—— ,— •.- ——-- - - - - -  --5 —-- - ‘~~~~~~~~~~~~~~~~~~ :‘

- ____— - 
23

I in

C I
4 p. —.-

~~
. ——— —

~ I

in 

-I —

N~~r4in I
I I 

-I -‘

, 4  .
~.4in

I I I 
--- .- --- . .3

-4 -4
in

I- -J -I

I 
I

I I
N

—4
in 

- ------5- ----------—------ • .- - -

II 40

-- - 

- 

~~---~~~~~~ T~~~~YJ .  ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-

~~~~~~~~-~~~-



~~~~~ _ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I ,_., 
24

C C N C) 0 o I 0
I N

I s_’ I

N m

r—- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -—— -- -
~~~

-- — — - -

I I
I 4.4

I I

I ‘-‘ I c I
I 

I I C C C C
N

I I i

I ~~NL-—-iU

- -  - — — -  - — — -

_ I
4-i I

5-. I

I 
‘—5 -

I ,—4 0
o I 

~~ I o C
N

‘0 -4
N m  c- -. r—--.3 II

I 
c,~ I

I I I 
4----- 4—--- - - -  4-- --.3—-- --- -•--—— 4- — .  - - - —-- —— 3 

4.)

I . C ~ NC— .3 II 1

~~ - - - -~~~ 

~~~~t” + 
I I

~~ 
I

-i—’ I I I
‘— 5- 

I I I

0 1 0 0 C 0 0 0 ‘-4

I I I if

i n ’ -  I I

I I

— - - --------— - - - —------ -- - - - - --- ---- -- - - - ------—----- ----- -------.- —-.

--5
4-i

5—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
-_ ~~~~~



25

and finally

L(t) 
{13 

01 : 3 X 21 ( 4 . 7 )

where , the notation used is as follows :

P..(t), E..(t): 1,~
th elements of matrices P(t) and [F(t) -P(t)H~ (t)R 

(t
~~ i (l)l

respectively

o( ): Kr8necker delta function ,

and for  any n x n ma t r ix  U ,

A T’.’U and U1 A UT~ (4. 8)
= 1 =- 1

th th
Observe the repetition of the 5 and 6 block rows as well as the

all zero row numbers 6 , 9 , 11, 12 , 14 , 15 , 17 , 18, 20 , 21 in the above

example , so that the filter dimensionality is in ef fec t reduced to 10.

This observation can be generalized in a straightforward way , and it

foLlows that the filter diinension in effect can be reduced to

H-i (N 2
N
*) + i ~~~~ 

1}~~~~ M_ i) 
-

Despite the possibility of improvements of the above type , the

practical implementation of such f i l te r  may at t imes prove formidable .

We conclude this paper by pointing out three nontrivial cases in which

the  b i l inea r  f i l t e r  presented here collapses in to  an e a s i l y imp lemen table ,

nonl inear , memoryless postprocessor , as shown in f i gure  2.

• ---5 - 

- --
~~—-— -

~~—
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Figure 2

z(t) Linear Memoryless L
• F i l ter  Nonlinearity 

~~t/t)

(i) ~ystems_with Out~~it Nonlinearit!:

Suppose the components of the x() process to be estimated

are multilinear forms in the components of a linear system driven

by the f~() process of (2.1). Systems of this type are frequently

of interest in realization theory (see e.g. [18]) as they serve

as good models for a wide class of nonlinear processes. Since

all (conditional) moments of a multivariate gaussian distri—

bution are completely determined by its (conditional) mean

vector and (nonrandoni conditional) covariance matrix , it is

easy to see that x(t/t), t > 0 can be obtained as in figure (2).

It can also be checked by direct differentiation that the x(•)

process satisfies a bilinear dynamical equation with the nilpotent

Lie algebra as in theorem (5).

( i i)  Abelian Systems:

Suppose that the matrices A , B1
,..., BN in (2.3) conunu te.

It is easily verified that

N

~ B .
1=1 ~ ~O 

‘ At
x(t) e • e x(0). (4.9)

The desired filter structure now follows upon utilizing the gaussian

characteristic function formula. (See also [1] and t191 .)

-- =5- - -- -  --~~~~- - - --—-- _ _
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( i i i )  Single Input Systems:

In (2.3) let N = 1 and let {A,B}
L 
be nilpotent. If we use the

canonical form of Leunna 1, it is not difficult to see tha t each

component of x() can be writ’:en as a finite sum 01 ternis of tI~-

form

bJ~~~
(T)d1 ~ f ~i ~~9.—l

y e at e 
J 

~~~Y1
)~~(G

2
) r,(o9

)da
1
•” do

9.

0 0  0

where y is a random variable independent of f (). But the 9. fold

integral in the above expression can be replaced by -
~~, ff

t
~ (o) do

’
)9.. Thus

case (iii) is roughly a combination of cases (i) and (ii).

For the sake of completeness , we record some formulas useful in

solving the above three cases. Let Y(t)Af
t
~ (T)dT . Then,

(Y(t/t) + ~
- o~ ( t ) )

E [e
’17 (t )

Y
i

( t )/ z t
1 

e m~[ô~it/t, + o2(t), o2(t)]

(4.10)

where 02 ( t ) :  Nonrandom error covariance (computed via a Riccati

equation) and m
9.(fl,

v): 9.~I~ moment of a gaussian random variable with mean

r i  and variance v.

Furthermore , m
9.
(~ , v), 9. = 2,4,6,... may be recursively computed via ,

(see e.g. [20), pp. 159—162)

- —  = —---
~~

-—-— m
9.2th,v) (4.11)

with

m9(~, 0)

_

~

_

~
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